
264

An
IbEE TRANSACIIONS ON FOFTWAHF. kN(;INEERING. V O L Sb 12. SI1 2 . FI-BRLAKk 14Mh I

Empirical Study of Software Design Practices
D A V I D N. CARD, VICTOR E. CHURCH. ANI) W I L L I A M W. AGRESTI

Absmmi-Siftware rnginccrr have dwrlopcd a large hdv (if d t - vidual modules were consistent with the Dumorted hene- * .
ware desiyn t h w y and LJkkire. much id which has nevrr I w n vuli-
dated. This paper repirts the results of an empirical rtudy of wiltware
desiyn practices in ime specific rnvirtmmml. l h r practices examinrd

sisc, mcduk strrnyth, data cou~iny, dewendant upan.
unrcfercnced variahks, and wiftwarc reuv. >lrawres charwtrristic of

fits of [he design practices, ~ l ~ h ~) ~ ~ h [he term .-niOd-
ule" can refer to a more elaborate structure I I I. as used
in this paper it equates to a Fortran "subroutine" consis-
tent with the Structured Design of Stevens ef d. 13 I . The

these practice% werc ealractrd frtm 887 Viwtrua midub devehprd ftw
five f l ih t dynamkr software priijects mimitcved hy the Siftware En-
gincering Lahcwatiwy. The relatitmship of these meowrev 111 ctwt and
fault rate was analyzed using a cimtinyrncv tahk prirrdurr. The re-
sulls shw that wme rectnnmended design practkes, despite their in-
tuitive appeal, are ineffective in this envircmment. whereas others are

authors selected three sanlples of Fortran niodules from
the Software ~ ~ ~ , ~ ~ ~ ~ i ~ ~ ~~b~~~~~~ (SEL) database for
study.

Sl'ffH'NM Etlgi!lterhg k~horurory
very effective. The SEL is a research project sponsored by the National

Index 7'enns-Coupliny. fault rate, module ccnt. reu.w. ude. Sift-
ware EngimerinR Lahiratury. strength. unreferrnced variahler.

INTRODUCIION

OFTWARE engineers have developed a large body of S theory, largely unsupported by quantitative evidence.
that specifies the characteristics a good design must in-
corporate. Formal methodologies, as well as folklore. pre-
scribe practices intended to maximize these characteris-
tics. This paper reports the results o f an empirical study
o f design practices in a Fortran-based scientific computing
environment. These practices can be expressed as a set of
rules.

Reuse software wherever possible.
Keep modules small.
Include only one function i n any module.
Use parameter rather than C O M M O N coupling.
A l low no more than seven descendants to any

Do not create or access data items unnecessarily.
Some in;portant design practices (e.g., information hid-

ing [1 I and data abstraction 121) had to be excluded from
this study because they were difi icult to measure and/or
implement in Fortran. Many factors weigh against simply
upgrading the developnient language: a substantial legacy
of previously developed Fortran software. obvious success
with the existing language and environment. and lack of
a persuasive analysis of the cost ztectiveness of alterna-
tives. This study therefore deals only with a sniall set of
design practices l ikely to be employed in a Fortran-based
scientific computing environment.

The purpose of this study was to determine whether o r
not the observed development cost and fault rate of indi-

module.

Aeronautics and Space Administration and supported by
Computer Sciences Corporation and the University o f
Maryland 141. The SEL monitors the development o f soft-
ware systems for ground-based spacecraft night dynamics
applications.

The general category of flight dynamics software in-
cludes applications that support attitude determination and
control. orbit determination and control. and mission
analysis. Most of these (primarily Fortran) programs are
scientitic and mathematical i n nature. The attitude sys-
tems. in particular. form a large and homogeneouh group
of software that has been studied extensively. Table I sum-
marizes the characteristics of typical Hight dynamics soft-
ware pro.jects.

The SEL iiionitors the development of all Hight dynam-
ics projects I ia forms and quehtionnaires. computer ac-
counting. and a source code analyzer. Prograinmer hours.
errors. and computer use as well as size and complexity
measures arc recorded. This information i s stored on a
computer database acccssible t o a l l SEL participants. SEL
data collection cforts through I984 include niore than 45
night dynamics projects.

Aticil~sis ,4pproach
Many researcher\. notably Boehni 151. have pointed out

the difi iculty o t making reliable statistical interences based
on data collectcd froin prv luct ion projects. Many uncon-
trolled (and largely uncontroiicible) factors afect the wt-
come o f a real pro,jcct. DeMarco 161. however. sug;lc.\[s
that i t i s better to usc the l imited data available than t o

guess unaided. Hence. thc method o f this paper was not
to pursue a rigorous ztati3tical analyis. but rather to at-
tempt t o discover the most visible trends i n actual proj-
ects.

Although simple stati5tics ;Ire used. the reader should

I

I
I

I
I
I

Manuscript rcceived April I X . lYX5
The author\ are with the Syrtcni Sclcnce\ Diviwm. Computer Sclencc\

Corpotation. Silver Spring. MD 20'40.
IEEE Log Nuinhcr XJOZJI I

keep in mind that statistics cannot p m ' c an assertion: they
can only estimate (under the right conditions) the wicx'r-
ruinry associated wi th i t . The objective o f this paper is not

0098-5589/86/0200-0264$01.00 0 1986 IEEE

3- 2

'I

a-

s-

9 -

1-

2 4 -

I

s
$
t
I

18-

12

a -

4 -

I -

L

I

-
-

I

-

1

I
s-

X -

m -
I 2 2 4 -

0 f a -

5 l a -

0

c

5
a. 12-

a -

4 -

I
1
I L

I
I
E
I

r

TABLE I
CHARACTERISTICS OF FLIGHT DYNAMICS SOFTWARE -

PROCESS CHARACTERISTICS

DURATION [MONTHS)

EFFORT ISTAFF YEARS1

SIZE 11000 SOURCE LINES OF
CODE)

OEVELOPED
DELIVERED

STAFF IFULL-TIME
EOUIVALENT)

AVERAGE
PEAK
INOIVIOUALS

APPLICATION EXPERIENCE
[YEARS)

MANAGERS
TECHNICAL STAFF

OVERALL EXPERIENCE
(YEARS)

MANAGERS
TECHNICAL STAFF

NOTES: TYPE OF SOFTWARE SUENTIFIC. GROUND-BASED.
INTERACTIVE GRAPHIC.

LANGUAGES: I PERCENT FORTRAN, 15 PERCENT
ASSEMBLER MACROS.

COMPUTERS: IBM MAINFRAMES.

TABLE I1
DATA SAMPLES STUDIED 1 I NUM; OF I :rLFTWARE 1 CClIp I

MOOULES ORIGIN MINIMUM

NEW ONLY YES

434 NEWONLY NO

"ODULES REQUIRING LESS THAN 1 HOUR OF EFFORT
EXCLUDED.

to pass final judgment on any design practice. It is hoped
rather that the presentation of this empirical data will pro-
vide additional information to researchers and practition-
ers evaluating alternative design strategies.

The evaluation of each design practice is based on an
analysis of one of three data samples extracted from five
projects monitored by the SEL. Table I1 describes the three
samples. Although all modules in these samples come from
the same projects. the samples differ with respect to the
selection criteria and measures included for study. Sample
A includes all Fortran modules from the five projects for
which the initial set of measures was complete. Sample B
is a subset of A consisting only of newly developed non-
trivial modules. All of the design practices under consid-
eration could not. however, be evaluated with the mea-
sures available in samples A and B. Sample C includes
additional measures extracted by a special design analysis
tool. Only three of the five projects have been processed
by the design analysis tool as of this date.

Examination of module cost and fault rates provided the
basis for the evaluation of the design practices. Module
cost includes the programmer hours of effort spent design-
ing, coding, and unitlintegration testing the module. Di-

3- 3

nouns p ~ l l a E c u n e u ~TATEMENT

Fig. I . Distribution of development cost (for sample B).

265

MODE - 0.10
MEDIAN - 0.P
MEAN - 0.37
MAXIMUM - 5 B

MOO€ - 0.0
MEDIAN - 0.02
M U M - 0.Q
MAXIMUM - 0.92

0.a 0.04 0.01 001 0.10 0 12 0 14 0.92

FAULTS Pen EXECUTABLE STATEMENT

Fig. 2. Di\rribution ot fault rate (t o r wnplr B l

viding by the number of executable statements normalizes
this measure with respect to module size. Faults were
counted for each module from the completion of unit/in-
tegration testing until the end of acceptance testing. Di-
viding the number of faults by the number of executable
statements produces the j i d t rare. The software studied
remains operational for a relatively short period (seldom
more than five years). and consequently. maintenance is
minimal. Faults and costs are not recorded for individual
modules during this period.

An initial examination of the data revealed that neither
module cost nor fault rate was normally distributed; Figs.
I and 2 illustrate this for sample B. Consequently. the au-
thors adopted a contingency table approach to the analysis
rather than relying on normal-distribution-based tech-
niques such as regression and analysis of variance. To per-
form the contingency table analysis, every module was as-
signed to one of three ordered classes (of nearly equal size)

266 1 [EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-12. NO 2. FEBRUARY 1986

for each of the quality measures of development cost (low,
medium, high) and fault rate (zero. medium, high).

The values 0.151 and 0.322 programmer hours per ex-
ecutable statement divided the modules into the three cost
classes (i.e.. 0.151 or less was low cost). The value 0.045
faults per executable statement distinguished between me-
dium- and high-fault-rate classes. One class consisted of
those modules with no reported faults.

Similarly, ordered classes of conformance to the design
practices were defined. The strength of the relationships
between the ordeFed classes of design characteristics and
quality measures was assessed by calculating the gamma
(7) correlation statistic [7]. This statistic varies from - 1.0
to +1.0.

DESIGN PRACTICES A N D CHARACTERISTICS
Characteristic measures were defined for each of the six

design practices. Each characteristic was studied using the
contingency table approach. The results of those analyses
are presented here.

Software Reuse
Although not always recognized as such, an important

design decision involves the reuse of existing software.
Some good ideas about how to write reusable software
have been published 181; however, opportunities to reuse
software must be recognized in the design activity. The
goals of this analysis (based on sample A) were to identify
the types of software that are reused in the flight dynamics
environment and to quantify the benefits of software reuse.

Table 111 lists some of the characteristics of software
reuse. Executable statements measure module size. Mean
decisions measure module complexity. The table indicates
that the modules that are reused without modification (old)
tend to be small and simple (exhibiting a relatively low
decision rate). A more detailed cross-classification (not
shown) revealed that 55 percent of all old modules are
high-strength algorithmic modules, the type likely to be
found in' mathematical software libraries. Table 111 shows
that extensively modified modules tended to be the largest
in terms of the number of executable statements.

Tables IV and V clearly demonstrate the cost and qual-
ity benefits of software reuse. Fully 98 percent of old
modules proved to be fault free, and 82 percent of them
fell into the lowest cost (per executable statement) cate-
gory. Significant (y) correlations are associated with both
of these relationships. (Percentages do not add to exactly
100 due to rounding.) These results are consistent with
previous SEL studies of reused code [4], which indicated
that reusing a line of code costs only 20 percent of the cost
of developing it new. Because these four classes of soft-
ware differ substantially with respect to structure and
quality measures, the subsequent analyses are based on
new modules only.

Module Size
The 453 modules in sample B were classified into three

approximately equal ordered groups on the basis of the

TABLE 111
CHARACTERISTICS OF REUSED SOFTWARE

SOFTWARE
TYPE

NEW

EXTENSIVELY
MODIFIED

SLIGHTLY
MODIFIED

OLD
IUNCHANGEDI

NUMBER
OF

MODULES

532

132

163

do

'NUMBER OF LOGICAL DECISIONS
EXECUTABLE STATEMENTS.

EXECUTABLE MEAN DECISIONS
STATEMENTS PER EXECUTABLE

STATEMENT0

DIVIDED BY NUMBER OF

TABLE IV
SOFIWARE REUSE AND DEVELOPMENT

SOFTWARE TYPE
DEVELOPMENT COST

EXTENSIVELY MODIFIED

SLIGHTLY MODIFIED

OLD IUNCHANGEDI 10

NOTE: GAMMA lyl * -0.33: PROBABILITY THAT y = 0 IS
LESS THAN o.mi.

TABLE V
SOFTWARE REUSE AND FAULT RATE

FAULT RATE (PERCENT1
SOFTL'. ARE TYPE

SLIGHTLY MODIFIED

OLD IUNCHANGEDI

NOTE: GAMMA lyl - -0.43 PROBABILITY THAT y = 0 IS
LESS THAN 0.W1

TABLE VI
MODULE S I Z E DISTRIBUTION

MODULE NUMBER OF EXECUTABLE MEAN DECISIONS
FORTRAN STATEMENTS PER EXECUTABLE I 'IZE I MODULES 1 I STATEMENT

SMALL 154 1 TO31 0 31

MEDIUM 148 U T 0 6 4 0 31

LARGE 151 650R MORE 022

I
1

number of executable statements in each module. Table VI
shows the results of this classification.

The largest module in the sample contained 267 exe-
cutable statements. The dividing line of 31 executable
statements is significant because, in the environment stud-
ied, it corresponds to about 60 source lines of code. Many
programming standards [9] limit module size to one page
(or 50-60 source lines of code); one purpose of the study
was to test the validity of such standards.

A cross-tabulation of module size with development cost
showed a correlation (y) of -0.31. The probability of this

3- 4

267

I
I
I
I
I
1
c
I
I
I
I
I
I
c
E
I

SMALL
I1 TO 31 EX STMTl

LARGE MEDIUM
IZ65EXSTMTl 132 TO 64 W STMTl

Fig. 3. Development cost for classes of module size.

correlation being due to random factors is less than 0.001.
Although the magnitude of this correlation seems small.
Fig. 3 provides a better illustration of its importance. As
the figure indicates, fully 46 percent of large modules fell
into the lowest cost class. whereas just 22 percent of small
modules were rated as low cost.

No significant relationship was found between module
size and fault rate. Two recent studies [IO] , [I l l con-
cluded that smaller modules were more fault prone. These
studies, however. adopted parametric approaches to the
statistical analysis. Sixty percent of the small modules in
sample B contained no faults. Nevertheless. this size class
exhibited the highest average fault rate because a small
module with even a single fault will show a very high fault
rate. That is the phenomenon detected by Basili and Per-
ricone [101 and Shen er ai. [11).

The effects of programmer performance and the possi-
bility of an interaction between module size and module
strength were subsequently considered in a more detailed
analysis of these data (121. That consideration did not
change the conclusion that larger modules cost less to de-
velop (per executable statement) than small ones. A sim-
ilar result has been reported for another class of software

.

~ 3 1 .

Module Strength
Myers [141 defines seven levels of module strength. In

descending order, these are functional, informational,
communicational, procedural, classical, logical. and co-
incidental. A high- (functional) strength module performs
a single well-defined function. Myers contends that high-
strength modules are superior to low-strength modules.
Although it was not possible to test this theory exactly, a
reasonable approximation was made. Some recent at-
tempts to develop objective measures of module strength
[151, [161 seem promising, but are not (in their present
forms) easily applied: consequently, they were not em-
ployed in this study. An earlier study [171 based on objec-
tive but indirect measures of module strength (cohesion)
proved inconclusive.

Programmers determined the strength of a module via
a checklist. rating each module they developed as per-
forming one OF more of the following functions: input/out-
put, logic/control, and/or algorithmic processing. Distin-
guishing the rvpes of functions seemed to be a less

3- 5

TABLE VI1
MODULE STRENGTH DISTRIBUTION

NUMBER OF MEAN MEAN DECISIONS
FORTRAN EXECUTABLE PER EXECUTABLE I I I I STRENGTH MODULES STATEMENTS STATEMENT

ambiguous task than identifying the number of functions
because the number of functions depends on the level of
decomposition recognized by the respondent. Those mod-
ules described as having only one function were classified
as high strength: those having iWO functions. medium
strength; and those having three or more functions, low
strength. Table VI1 summarizes the results of this classi-
fication procew for sample B).

A cross-tabui.ition of module strength with fault rate
showed a corrci.ition (7) of -0.35. The probability that
this correlation I \ due to random factors is less than 0.001.
Again. a figure provides a better indication of the mag-
nitude of this correlation. Fifty percent of high-strength
modules were fault free. whereas only 18 percent of low-
strength modules were fault free (Fig. 4).

No significant relationship was discovered between mod-
ule strength and development cost. The effects of pro-
grammer performance and the possibility of an interaction
between module size and module strength were subse-
quently considered in a more detailed analysis of these data
[121. The conclusion. however. remained unchanged: de-
veloping high-st rength modules is good practice.

Dam Coupling
There are two ways that Fortran modules can be coupled

directly: through calling sequence parameters or through
COMMON block variables. (A COMMON block is a
global data area.) Some authors have argued against
COMMON coupling [Y I even if. as a result. calling se-
quences become long and unwieldy. A design measure was
devised to evaluate that argument.

For this analysis. the modules in sample C were grouped
into three ordered classes with respect to the percentage
of referenced input/output variables in COMMON: zero.
5 15 percent, and > 15 percent. Separate analyses were
performed for euch of three classes of modules based on

268

HIGH
STRENGTH

Fig. 4

PARAMETER

TABLE VI11
EFFECTS OF COUPLING TILII

1 IEEE TRANSACTIONS O K SOFTWARE ENGINEERING. VOL. SE-I?. NO 2. FEBRUARY 1'486

MEDIUM LOW
STRENGTH STRENGTH

Fdull rale lor cl;l?l\e\ ol' niodule Frrength

MIXED COMMON

Fig. 5. Fault rate by coupling type.

T A B L E IX
CHARACTERISTICS OF MCJDULE INVOCATION

-0.15

TERMINAL

UTILITIES -0.12

'LOCATION IN DESIGN STRUCTURE.

 GAMMA iyi STATISTIC.

CPROBA81UTY cO.01 THAT ACTUALLY IS ZERO

position in the software structure: nonterminal nodes (fan-
out >O), terminal nodes (fan-out = 0), and utilities
(fan-in > 1). As Table VI11 indicates, no relationship was
observed between fault rate and coupling.

Fig. 5 illustrates this; the percentage of zero-fault mod-
ules is about the same for both parameter and COMMON
coupled modules. On the other hand, Table VI11 also in-
dicates that, for utility modules, a cost savings is associ-
ated with COMMON coupling (-0.41 correlation with
cost). Earlier recommendations that common coupling was
best avoided may have been based on experience before
the general availability of "INCLUDE" processors. In an
environment where only a single version of a COMMON
block definition needs to be maintained, COMMON cou-
pling is an acceptable. and sometimes preferable. alter-
native to parameter coupling. Funhermore. another study
[18] failed to show any significant difference between
global and parameter coupling with respect to modifiabil-
ity.

 ZERO^ 123 36 1 . 1

ONE 81 45 3.0

TWO TO SEVEN I87 80 8.5

MORE THAN SEVEN 43 a0 14.8

'BASED ON CALLa TO APPLICATION SOFTWARE ONLY

 INCLUDES ALL C A L ~ OF ANY TYPE.

'TERMINAL NODES EXCLUDED FROM ANALYSIS.

Descendant Span

i
I
I
I
1
I

I
Another basic design principle is that no module should I

call too many (i.e., more than seven) other modules. Fur-
thermore, a module that calls only one other module might
just as well include the other module's function within it-
self. One formulation of this concept is an adaptation of
the "7 * 2 rule" [191, which states that each module
should call from five to nine other modules, except in the
case of terminal nodes. This rule is a formal element of
the System Activity Modeling Method [20].

For this analysis, the modules in sample C were grouped
into three ordered classes with respect to the number of
descendants: one. two to seven, and more than seven.
(Terminal nodes were not included in this analysis.) Table
IX shows some characteristics of these classes. The re-
sults of cross-classification indicate that modules with
more descendants tend to Cost more (per executable state-
ment) to develop ('Y = 0.25) and have a higher fault rate

4
4
I

3- 6

CARD CI d.: SOFTWARE DESIGN PRACTICES

. _ _ _ _

COMMON

ONE

FAULTS COST

241 -0 33b -0.w

MANY

LOCALANO
CALL IN G
SEQUENCE

Fig. 6. Fault rate by descendant count.

434 0.Ub O.&

(y = 0.33). The probability of these correlations being
due to chance is less than 0.01.

Fig. 6 illustrates the magnitude of the difference among
classes for fault rate. Only 12 percent of modules with
more than seven descendants were fault free, whereas 42
percent of modules with only one descendant were fault
free. Apparently, the simpler the invocation structure in a
module, the better. This measure of structural complexity
has proven to be clearly related to fuulr rate (faults per
executable statement), whereas more complex measures
based on counts of decisions and operators have not [21].
On the other hand, the total number of faults appears to
increase with size, decisions, operators, etc. [21]. Earlier
SEL studies dealing with descendant span (e.g., [22]) were
handicapped because the source analyzer program that
produced this measure did not distinguish between calls
to system/library routines and calls to other application
modules. The design analysis tool developed for this study
remedies that deficiency.

Unreferenced Variables
Most guidelines encourage designers (and program-

mers) not to create or access data items unnecessarily.
Failure to reference a variable (in the completed module)
indicates that its presence is unnecessary. Unreferenced
variables in a Fortran module arise from three sources:
locally unused variables carried along in COMMON, un-
used variables defined locally, and unreferenced calling
sequence parameters. In this environment, the presence
of unreferenced variables in COMMON usually indicates
that the COMMON block represents a data structure (e.g.,
record, state definition) rather than a simple subsitute for
calling sequence parameters.

For these analyses, the modules in sample C were
grouped into three ordered classes with respect to the per-
centage of unreferenced variables. Separate analyses were
performed for locally or calling sequence defined variables
and for variables accessible in COMMON. The percentage
of unreferenced variables of each type was calculated for
each module. Then the modules were classified as having
none, a medium percentage, or a high percentage of un-
referenced variables. Table X lists the results obtained by
comparing the presence of unreferenced variables to cost
and fault rate.

3-7

269

TABLE X
EFFECTS OF UNREFERENCED VARIABLES

CORRELATION* OF PERCENT
LOCATION UNREFERENCED VARIABLES I OF I I WITH 1

VARIABLES

'GAMMA 171 STATISTIC,

bPROBABILITV <O.Ot THAT 7 ACTUALLY IS ZERO

These results indicate that keeping logically related var-
iables together (in COMMON), even if some are not used,
is associated with a lower fault rate. (Possibly the addi-
tional contextual inhmnation provided by the data struc-
ture promotes the correct use of the data items needed.
This effect may be d a t e d to the wncept of data abstrac-
tion [2].) Table X further implies that a high proportion of
unreferenced local and calling sequence variables signifies
sloppy workmanship. leading to high cost and fault
rates. Fig. 7 illustrates the magnitude of this association.
Only 17 percent of modules with more than 20 percent
unreferenced (local and calling sequence) variables were
fault free, whereas 46 percent of modules with no such
unreferenced variables were fault free. This result pro-
vides indirect suppon for the use of information hiding
[11. That is, the presence of unreferenced variables in the
calling sequence suggests a lack of information hiding.

CONCLUSIONS
Overall, these results suggest that although many as-

sumptions about system design and software development
are well founded some need to be rethought. Changes in
computer hardware and other software technology can al-
ter the effectiveness of a design practice (e.g., COMMON
coupling). The specitic results obtained from this study
can be summarized as follows.

Arbitrary module size limitations can increase mod-
ule cost.

High module strength reduces fault rate.
COMMON coupling reduces development cost for

utility modules.

270 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING. VOL SE-I?. NO 2. FEBRUARY 1986

NONE UP TO 20% MORE THAN M% -

Fig 7. Fault rate by unreferenced variahleb.

Modules with many descendanth are more fault prone [I21 D. N . Card. G . T. Page. F. E. McGarry. "Criteria for software mod-

[131 P. C. Belford. R. C. Berg. and T. L. Hannan. "Central flow control
software development: A case study of the effectiveness of software
engineering techniques," in Proc. Fourrh fnr. Con/: Sofrware Eng..
1979. pp. 85-93.

New York: Van Nos-

ularization." in Proc. Eighrh fnr. Con/: Sofrware Eng., 1985. than those with few.
Modules with many (non-COMMON) unreferenced

variables are more fault prone and ultimately Cost more
[141 G. 1. Myers, ComposirelSrrucrured Design. than those with few.

Software reuse reduces system cost and fault rate.
Empirical studies such as this provide a mechanism for

verifying the relevance of items in the store of software
engineering knowledge. All design practices are not
equally effective in all environment\ In every case, the
effects of technology must be measurcd before practition-
ers can make informed decisions. These specific results
probably apply to any similar scientitic software develop-
ment environment. Despite advanccsy in other program-

* ming languages, Fortran 'seems likeiy to continue to be
used for many scientific applications [23]. Thus, studies .

trand-Reinhold, 1978.
151 R. D. Cruickshank and J. E. Gaffney. "Measuring the development

process: Software design coupling and strength matrices." in Proc.
Fifrh Annu. Sofrm'are Ens. Workshop, NASAiGSFC. Nov. 1980.

161 T. J. Emerson. " A discriminant metric for module cohesion.'' Proc.
Seventh fnr. Con/: Soffware Eng.. 1984. pp. 294-303.

171 D. A. Troy and S. H. Zweben. "Measuring the quality of structured
designs." 1. Sysr. Sofrware. vol. 2 , pp. 113-120. 1981.

181 J. B. Lohse and S. H. Zweben. "Experimental evaluation of software
design principles: An investigation into the effect of module coupling
on system modifiability," J. S w . Sofrware. voi. 4. pp. 301-308. 1984.

191 G. A. Miller. "The magical number seven. plus or minus two: Some
limits on our capacity for processing information." Psvchol. Rev.,
vol. 63. DD. 81-97. 1956.

of current Fortran practice are important and should be
encouraged.

ACKNOWLEDGMENT
The authors would like to thank F. E. McGarry, G. T.

Page, and V. R. Basili for their support in this work, and
the referees for their assistance in polishing this presen-
tation.

REFERENCES
[I] D. L. Parnas, "On the criteria to be used in decomposing systems

into modules," Commun. ACM. vol. IS, no. 12. pp. 1053-1058. Dcc.
1972.

121 B. Liskov and S. Zilles. "Specification techniques for data abstrac-
tions." I€€€ Tmns. Software Eng.. vol. SE-I. pp. 7-19. 1975.

131 W. P. Stevens, G. 1. Myers. and L. L. Constantine. "Structured de-
sign." fBM Svsr. 1.. vol. 13. no. 2. pp. 115-139, 1974.

[4] D. N. Card. F. E. McGarry. G. T. Page er a[. , me Sofrware Engi-
neering Labomrorv. NASAIGSFC. Fcb. 1982.

151 B. W. Bochm. Sofrware Engineerrng Economics. Englewood Cliffs.
NJ: Prentice-Hall. 1981.

161 T. DeMarco. Conrrolling Sofrware Projrrrs. New York: Yourdon
Press. 1982.

171 L. A. Marascuilo and M. McSweeney. Nonparclmerric and Disrribu-
rion Frre Merhods for rhe Social Sciences. California: Brooksicole.
1977.

181 B. Meyer. "Principles of package design.'' Commun. ACM. vol. 25.

191 8. W. Kernighan and P. S. Plauger. The Nemenrs of Programming
Srvle. New York: McGraw-Hill, 1974.

[IO] V. R. Basili and 8. T. Perricone. "Software errors and complexity:
An empincal imestigation." Commun. ACM. vol. 27, pp. 42-52. 1984.

[I I] V. Y. Shen. T. Yu. S. M. Thebaut. and L. R. Paulsen, "Identifying
error-prone software-An empirical study." / €€E Tmns. Sofrware

pp. 385-395. 1982.

h g . . VOI. SE-II. pp. 317-324. 1985.

1201 SAMM (i{,srem Acrf viry Modeling MerhodJ Primer, Bocing Computer
Services Co.. Doc. BCS-10167, 1978.

1211 F. E. McGarry. "Measuring software technology." in Proc. Sevenrh
Annu. Sofrware Eng. Workshop. NASAiGSFC, Dec. 1982.

1221 V. R. Basili. R . W. Selby. and T. Phillips. "Metric analysis and data
validation across FORTRAN projects.'' I€.€€ Tmns. Sofrware Eng. ,

1231 M. Metcalf. "Has FORTRAN a future?." presented at the Europhys.
Conf. Software Eng. Methods, Tools Comput. Phys., Aug. 1984.

VOI. SE-9. pp. 652-663. 1983.

David N. Card received the B.S. degree in inter-
disciplinary studies from American University.
Washington. DC. in 1975 and has since done ad-
ditional graduate study in applied statistics.

For the past six years he has been a member of
the Computer Sciences Corporatton (CSC) team
supporting the Software Engineering Laboratory
(SEL). His areas of activity in the SEL include
software measurement. technology evaluation, cost
estimation. and standards development.

Mr. Card is a member of the Association for
Computing Machinery and the American Statistical Association.

s
Victor E. Church received the B.S. degree from
the University of Maryland, College Park. in 1973
and the M.S. degree in computer science and
physiology from George Washington University.
Washington. DC. in 1977.

He is a programming and reseamh manager at
Computer Sciences Corporation (CSC). Since
1979 he has worked at CSC in the areas of soft-
ware design and software engineering research.
Previously. at the GWU Medical School he stud-
ied student computer interaction while managing

Mr. Church is a member of the IEEE Computer Society and the As=-

B
a computer-based educational facility.

ciation for Computing Machinery.

i
1
P

3- 8

CARD ef d.: SOFTWARE DESIGN PRACTICES

*-S

William W. Agresti received the B.S. degree from
Case Western Reserve University. Cleveland, OH,
and the M.S. and Ph.D. degrees from New York
University, New Yo&. NY.

He is a Senior Computer Scientist with Com-
puler Sciences Corporation (CSC) where his ap-
plied research and development projects support
the Software Engineering Laboratory (SEL) at
NASA's Goddard Space Flight Center. His re-
search interests are in software process engineer-
ing and software metrics. From 1973 to 1983 he

27 I

held various faculty and administrative positions at the University of Mich-
igan. Dearborn, including founding Director of Computer and Information
Sciences. Associate Professor of Industrial and Systems Engineering, and
Associate Dean of the School of Engineering. During this period, he was
a consultant to Ford Motor Company and other corporations and agencies.
and he was a founder of the software products firm A.I.S. International,
Inc.

Dr. Agresti is a member of the IEEE Computer Society and the Asso-
ciation for Computing Machinery, serving as President of the Metropolitan
Detroit Chapter of ACM in 1979-1980.

3-9

